NPA2040-MQ

27.5 – 31 GHz GaN 8 W Power Amplifier

Product Description

The Nxbeam NPA2040-MQ is a Ka-band high power amplifier fabricated in 0.2um GaN HEMT on SiC in a metal QFN package. The amplifier operates from 27.5 to 31 GHz and provides an average of 8 W saturated output power, 25% PAE, and 22 dB of linear gain. The metal QFN is designed for easy system integration with RF input and output ports matched to 50 ohms.

Applications

- Ka-band Satellite Communications
- 5G Infrastructure
- Point-to-Point/Multipoint Digital Radios

Key Features

Frequency: 27.5 – 31 GHz
Linear Gain (Ave.): 22 dB

Psat (Ave.): 8 WPAE (Ave.): 25%

Electrical Specifications

Test Condition: Vd = 27 V, Idq = 0.5 A, CW Performance, Typical Performance at 25°C

Parameter		Min	Typical	Max	Unit
Frequency		27.5		31	GHz
Gain (Small Signal)	27.5 GHz		20.8		
	29 GHz		22.5		dB
	31 GHz		23.0		
	27.5 GHz		38.2		
Output Power (at Psat, Pin=23.3 dBm)	29 GHz		39.6		dBm
	31 GHz		38.3		
	27.5 GHz		22.0		
PAE (at Psat, Pin=23.3 dBm)	29 GHz		28.0		%
	31 GHz		27.0		
	27.5 GHz		15.2		
Power Gain (at Psat, Pin=23.3 dBm)	29 GHz		15.6		dB
	31 GHz		16.8		
	27.5 GHz		6		
Input Return Loss	29 GHz		25		dB
	31 GHz		14		
	27.5 GHz		8		
Output Return Loss	29 GHz		12		dB
	31 GHz		14		

Maximum Quiescent Bias

Parameter	Max	Unit
Drain Voltage (Vd1, Vd2, Vd3)	28	V
Drain Current (Id1)	140	mA
Drain Current (Id2)	160	mA
Drain Current (Id3)	550	mA

Maximum quiescent bias represents the operational bias used during reliability life testing. Biasing the part at or below this bias ensures reliability will be bound by the published reliability results.

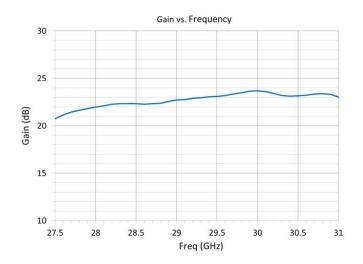
Phone: 949-656-2883

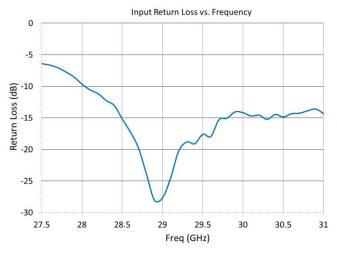
Datasheet Revision: March 1, 2025 Page 1 of 7

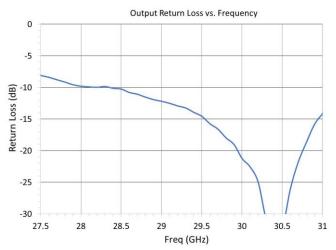
Absolute Maximum Ratings (Temp. = 25°C)

Parameter	Min	Max	Unit
Drain Voltage (Vd1, Vd2, Vd3)		28	V
Drain Current (Id1)		350	mA
Drain Current (Id2)		400	mA
Drain Current (Id3)		1400	mA
Gate Voltage (Vg1, Vg2, Vg3)	-8	0	V

Absolute maximum ratings represent the maximum current under power saturation conditions.


Recommended Quiescent Operating Condition

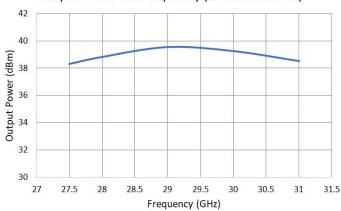

Parameter	Value	Unit
Drain Voltage (Vd)	20 - 27	>
Drain Current (Id1)	up to 140	mA
Drain Current (Id2)	up to 160	mA
Drain Current (Id3)	up to 550	mA
Gate Voltage (Vg) (Typical Range)	-5.5 to -3.5	٧

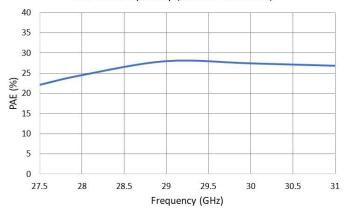

Gate voltage will vary based on desired current per stage

Small Signal Performance

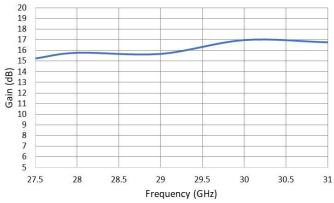
Test Condition: Vd = 27 V, Idq = 0.5 A, (CW Performance, Typical Performance at 25°C)

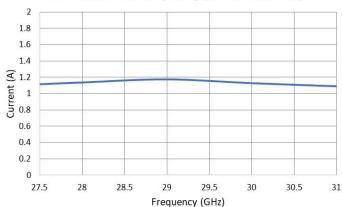
Phone: 949-656-2883


Datasheet Revision: March 1, 2025 Page 2 of 7


Large Signal Performance

Test Condition: Vd = 27 V, Idq = 0.5 A, Pin = 23.3 dBm (Psat) (CW Performance, Typical Performance at 25°C)

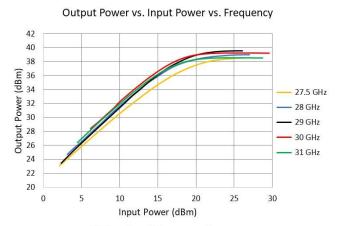

Output Power vs. Frequency (at 23.3 dBm Pin)

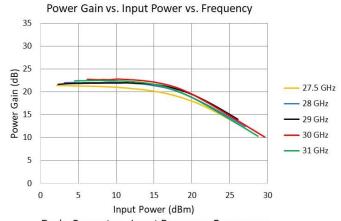

PAE vs. Frequency (at 23.3 dBm Pin)

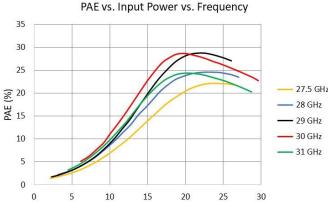
Gain vs. Frequency (at 23.3 dBm Pin)

Drain Current vs. Frequency (at 23.3 dBm Pin)

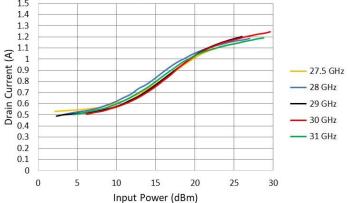
Datasheet Revision: March 1, 2025 Page 3 of 7







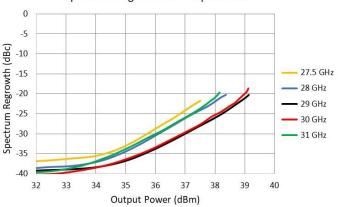
Large Signal Performance


Test Condition: Vd = 27 V, Idq = 0.5 A, (CW Performance, Typical Performance at 25°C)

Drain Current vs. Input Power vs. Frequency

2-Tone Linearity Performance

Input Power (dBm)


Test Condition: Vd = 27 V, Idq = 0.5 A 10 MHz Tone Spacing

Spectral Regrowth Performance

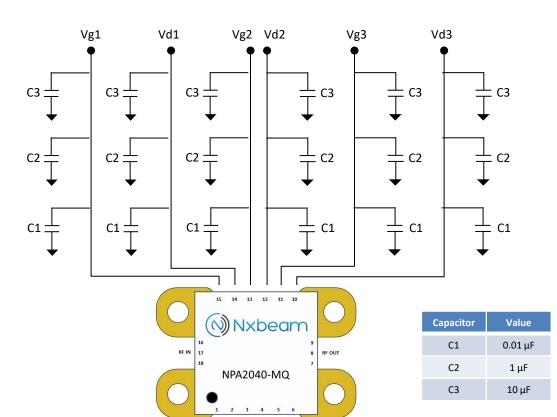
Test Condition: Vd = 27 V, Idq = 0.5 A QPSK, 10 MSPS, Alpha = 0.2

Spectrum Regrowth vs. Output Power

Phone: 949-656-2883

Datasheet Revision: March 1, 2025

Page 4 of 7

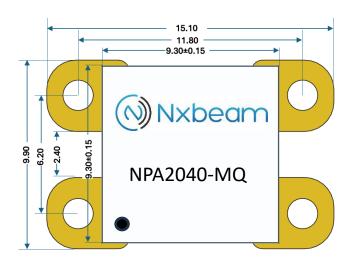


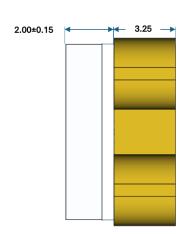
Connection and Off-Chip Components

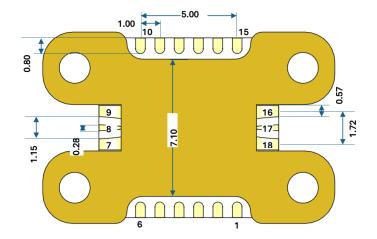
The following diagram shows the recommended off-chip components. The off-chip components should be located as close to the part as possible. Please consult with Nxbeam on other off-chip network variations.

Pad Num.	Function
1	NC
2	NC
3	NC
4	NC
5	NC
6	NC
7	GND
8	RF OUT
9	GND

Pad Num.	Function
10	Vd3
11	Vg3
12	Vd2
13	Vg2
14	Vd1
15	Vg1
16	GND
17	RF IN
18	GND


Datasheet Revision: March 1, 2025 Page 5 of 7





Dimensions (all dimensions in mm)

Datasheet Revision: March 1, 2025 Page 6 of 7

Bias Information

Bias-up Procedure:

- 1.) It is recommended that voltage and current limits are set on the voltage supply's prior to biasing the product.
- 2.) Ensure power supplies are properly grounded to the product test fixture.
- 3.) Apply a negative gate voltage of -7V to Vg1, Vg2, and Vg3 to ensure all devices are pinched off.
- 4.) Gradually increase the drain bias voltage (Vd1, Vd2, Vd3) to the desired bias level but not to exceed the maximum voltage of 28 V.
- 5.) Gradually increase the gate voltages (Vg1, Vg2, Vg3) while monitoring the drain current until the desired drain current in each stage is achieved.
- 6.) Apply RF signal.

Bias-down Procedure:

- 1.) Turn off RF signal.
- 2.) Gradually decrease Vg1, Vg2, and Vg3 down to -7 V.
- 3.) Gradually decrease the drain voltages (Vd1, Vd2, Vd3) down to 0 V.
- 4.) Gradually increase gate voltages (Vg1, Vg2, Vg3) to 0 V.
- 5.) Turn off supply voltages

ESD Sensitive Product

Important Information

Nxbeam Inc. reserves the right to update and change without notice the characteristic data and other specifications as they apply to this document. Customers should obtain and verify the most recent product information before placing orders. Nxbeam Inc. assumes no responsibility or liability whatsoever for the use of the information contained herein.

Datasheet Revision: March 1, 2025 Page 7 of 7

